COMPLEX MATERIALS SCATTERING (CKS) Proposal Team: C. Burger¹, K. Cavicchi², E. DiMasi³, A. Fluerasu³, S. Fraden⁴, M. Fukuto³, O. Gang³, B.S. Hsiao¹, R.J. Kline⁵, S. Kumar⁶, O. Lavrentovich⁶, B. Ocko³, R. Pindak³, M. Rafailovich¹, R.A. Register⁷, S. Sprunt⁶, H.H. Strey¹, B.D. Vogt⁸, W.-L. Wu⁵, L. Wiegart³, **K.G. Yager³**¹Stony Brook University, ²University of Akron, ³Brookhaven National Lab, ⁴Brandeis University, ⁵NIST,⁶Kent State University, ⁷Princeton University, ⁸Arizona State University # BROOKHAVEN # TECHNIQUES AND CAPABILITIES - Small- and wide-angle x-ray scattering on 3PW source, in transmission and reflection mode: USAXS, SAXS, WAXS, GISAXS, GIXRD - High-throughput x-ray scattering for intelligent exploration of vast parameter spaces - **Versatile** sample environment for stimuliresponsive and *in-situ* experiments - Broad q-range (4×10⁻⁴ to 7.0 Å⁻¹) to study complex, hierarchical materials, including nextgeneration nanomaterials - Microbeams and energy tuning (5 to 20 keV) for heterogeneous sample mapping ### KEY CONCEPTS #### Rational materials design: - New materials are hierarchical, nanoscale, and multi-component - More sophisticated materials science requires *design* - Need understanding at all lengthscales #### Non-equilibrium science: - · Path-dependent effects - Processing history - · Stimuli/responsive - · Applied fields - Engineering the energy landscape to control order ## **Automation and throughput:** - · Robotic sample changer - Explore vast parameter spaces using data feedback - Integrated experimental controls (microfluidics, sample environments, mapping) ### SELECTED APPLICATIONS **Synthesis:** Using x-ray probes of structure to control reagent feeds, CMS will autonomously optimize synthesis (e.g. of nanoparticles) Assembly: Tuning the selfassembly energy landscape with applied stimuli; understanding the resultant 3D hierarchical structures ### **Complexes and formulations:** Massive parameter spaces will be explored to understand assembly and control formulation properties **Polymers:** *In-situ* study of polymers under stress and flow will shed light on polymer crystallization **Devices:** Studies of stimulated and direct self-assembly, e.g. in DNA lattices or block-copolymer nano-lithography, will pave the way for next-generation device architectures **Energy:** High-performance materials for, e.g., organic solar cell, batteries, supercapacitors, fuel cells